Baltic Way 2017

Sorg, November 11th, 2017

Problems and solutions

Problem 1. Let ay,a;, a,, ... be an infinite sequence of real numbers satisfying % > a, for all positive integers n.
Show that
Ao+ ansy i+ ast .t ay

2 n

holds for all positive integers n.

Solution
From the inequality % > a, we get a, ., —a, > a,—a,_;. Inductively this yields that a,,; —a; > ay,; — a; for any
positive integers [ > k, which rewrites as

A+ a2 a;+agn

Now fix n and define b,, = a,, + a,.1_,, for m =0,..n+1. For m < %, we can apply the above for (I, k) = (n —m, m)
yielding
by =Gpi1-m+ am Z Apn + Qi1 = b

Also by symmetry b,,, = b,,,;_,,. Thus
bl + e + bn
m=0,...,n+1 m=1,..,n n

substituting back yields the desired inequality.

Problem 2. Does there exist a finite set of real numbers such that their sum equals 2, the sum of their squares equals 3, the
sum of their cubes equals 4, ..., and the sum of their ninth powers equals 10?

Solution
Answer: no.

Assume that such a set of numbers {a;, ..., a, } exists. Summing up the inequalities
2a’<a’+a}
for all i we obtain the inequality 8 < 8. Therefore all the inequalities are in fact equalities. This is possible for the cases

a; =0 or a; =1 only, but the elements of a set are all different.

(Remark: Even if the a;’s are allowed to be equal it is clear that only 0’s or only 1’s do not satisfy the problem conditions.)

Problem 3. Positive integers x, ..., x,,, (not necessarily distinct) are written on a blackboard. It is known that each of the
numbers F, ..., Fyg can be represented as a sum of one or more of the numbers on the blackboard. What is the smallest
possible value of m?

(Here F,, ..., B g are the first 2018 Fibonacci numbers: F, =FK =1, F, ., =F.+ F._; for k> 1.)

Solution
Answer: the minimal value for m is 1009.

Construction: Define x; = K;_;. Thisworks since K = Ff+ FE+...+ E;_;, forall k, which can easily be proved by induction.
Minimality: Again by induction we get that F;.,, =1+ F + K +...+ F, for all k, which means that

Fo>FE+E+...+F. (%)

Consider the numbers that have been used for the representing the first k Fibonacci numbers. Then the sum of these x;’s
is less than F;.,, due to (x). Thus, at least one additional number is required to deal with F,,. This establishes the lower
bound m <1009.

Problem 4. A linear form in k variables is an expression of the form P(x,..., x;) = a; x; + ...+ ay x; with real constants
ai,...,a;. Prove that there exist a positive integer n and linear forms P, ..., P, in 2017 variables such that the equation

_ 2017 2017
X1 Xo ..ot Xog17 = Pl(xl,...,.x2017) + ...+Pn(x1,..., x2017)

holds for all real numbers x;, ..., X29;7.



Solution
Solution 1: For every £ =(&,,...,£,) € {£1}?°17 let

Pe(Xy,- s Xoni7) = 1.X) + 4 £2017 Xo017
and ﬂg = 31 A 82017. Consider

g(Xl’ .. ka) = Z(ﬁeps(Xl’ cee ’X2017))2017

€

_ 2017
= E £y Ex017(61 X1+ + 2017 X0017)”

If we choose X, = 0, then every combination (£,X, + -+ + £50,7X,017)?°} occurs exactly twice and with opposite signs in
the above sum. Hence, g(0, X,, ..., X5017) = 0. The analogous statements are true for all other variables. Consequently, g
is divisible by X; ... X,q;7, and thereby of the form cX; ... X,y,7 for some real constant c. If ¢ # 0, then both sides can be
divided by ¢, and we obtain a representation with n = 2207 linear forms.

With X; =--- = X,4;7 = 1 we get

_E 2017
Cc= 81'...‘62017(£1+...+82017)
&

2017 fy+1 Koo +1
>IN D P e
P k 1r.++» R2017

Treeer k2017
K1+ kg1 7=2017

The part of the sum with k; even is zero since

2017
)( IR eSS ) =

ky even,...,ky17 (kl’ oo ko017 £,e=1 £,6=—1

Kyt Kipg 7=2017
Now we may consider the part of the sum with k; odd. Similarly the part of this new sum with k, even equals 0. Doing this
for all the variables we get

- 2017 ):22017(120171)222017~2017!7£0

£k odd,..., k7 odd(kl""'k2017 rren

Kyt kg7 =2017

Finally, we can even merge the two forms with opposite choices of the signs to obtain a representation with 2216 linear
forms.

Solution 2: We show by induction that for every integer k > 1 there exist an n = ny, real numbers 4,,...,4,, and linear
forms Py ,,..., P ,, in k variables such that

xl...xk=A1Pk,1(x1,...,xk)k+---+AnkPk,nk(x1,...,xk)k.
For k =1 we can choose n=n; =1 and P, ;(x;) = x;. Now for the induction step, we observe that
k k
xl"'xky:Alpk,l(xlr'--rxk) y+"'+z’kpk,nk(xlr---rxk) y

Thus it suffices to write XX Y as a linear combination of (k + 1)-th powers of linear forms in X and Y. The set-up

m

xky = Zai(X + B Y)Yk

i=1

leads to the equations Zi a;Bi= k+r1 and Zi a,-ﬁl.d =0ford =0,2,3,...,k+1. Choosing m = k+2 and distinct values for the
B:’s, this becomes a system of k + 2 linear equations in the k + 2 variables ;. If the system had no solution, then the left-
hand sides of the equations would be linearly dependent. On the other hand, given ¢;, j =0,1,..., k+1with ), iCi ﬂij =0for
all i, the polynomial P(x)= Z i€ jxf has degree at most k + 1 and the k +2 distinct zeros by, ..., by, and, hence, is the zero
polynomial. Consequently, the system has a solution, and we can choose n;,; = (k +2)n; and the induction is complete.



The above gives us

2017 )2017

+---+ 7L,,2017P2017,n2m7(x1, ceey x2017
)2017

X1... X017 = AIP2017,1(x1r veor X2017)

2017
_(41/2017
—(7% Pyo17,1(%1, - .-, X2017) )

1/2017
+"'+(/1 P2017,n2017(x1"“’x2017)

’
o017

as wanted.

Remark: Of course, the consistency of the system of linear equations also follows by the fact that the determinant of the
coefficient matrix does not vanish as it is of Vandermonde’s type.

Problem 5. Find all functions f : R — R such that

fEEN)=Flxy)+y f(f(x)+y)
for all real numbers x and y.

Solution
Answer: f(y)=0.

By substituting x = 0 into the original equation we obtain f(0)= f(0)+y f(f(0)+y), which after simplifying yields y f(f(0)+
¥)=0. This has to hold for every y.

Now let’s substitute y =—f(0). We get that —(f(0))*> = 0, which gives us f(0)=0.

By plugging the last result into y f(f(0)+ y) =0 we now get that y f(y)=0.

Therefore if y # 0 then f(y)=0.

Altogether we have shown that f(y)=0 for every y is the only possible solution, and it clearly is a solution.

Problem 6. Fifteen stones are placed on a 4 x 4 board, one in each cell, the remaining cell being empty. Whenever two
stones are on neighbouring cells (having a common side), one may jump over the other to the opposite neighbouring cell,
provided this cell is empty. The stone jumped over is removed from the board.

X[ ] —»[1[X

For which initial positions of the empty cell is it possible to end up with exactly one stone on the board?

Solution
There are three types of cells on the board: corner cells, edge cells and centre cells. Colour the cells in three distinct colours
as follows.

A|B|IC|A
B|C|A|B
C|A|B|C
A|B|IC|A

Suppose there are initially a, b, ¢ stones on cells of colours A, B, C, respectively. With each move, one of these numbers
will increase by 1, while the other two will decrease by 1. Because there are fourteen moves altogether, the game must end
with a, b, ¢ of the same parity as they originally had. There are 6, 5, 5 cells of each colour on the board, so if the game
should end with a single stone remaining, the game must begin with

a=6,b=5c=4 or a=6,b=4,c¢c=5.

The empty slot should thus have colour B or C. This excludes the corner cells and two of the centre cells. However, by
symmetry (changing the colouring), the two remaining centre cells will also be excluded. Hence the empty space at the
beginning must be at an edge cell. That the game is indeed winnable in this case can be seen from the sequence of moves
here:

o|aelo els s 9 °
ool ojele|0 ole|e oo|e o|dlelo
— —> — — —
ojolo|e 0K olcie ° 0 oo
ojolo|e ojolofe oloofe ejelof0 eolcle
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— —> — —
o0 ° 0
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Problem 7. Each edge of a complete graph on 30 vertices is coloured either red or blue. It is allowed to choose a non-
monochromatic triangle and change the colour of the two edges of the same colour to make the triangle monochromatic.
Prove that by using this operation repeatedly it is possible to make the entire graph monochromatic.

(A complete graph is a graph where any two vertices are connected by an edge.)

Solution
The total number of edges is odd. Assume without loss of generality that the number of blue edges is odd, and the number
of red edges is even. It is clear that the parity of the number of edges of each colour does not change by the operations.
Consider a graph with maximal number of blue edges that can be obtained by these operations. Suppose that not all of
its edges are blue. Then it contains at least two red edges. Because of maximality, it is not possible to have a triangle with
exactaey two red edges.
Case 1. It contains two red edges AB and BC sharing a common vertex. Then edge AC is coloured in red, too. If there
exists a vertex D such that the edges DA, D B, D C are not of the same colour, then wlog we can assume that D A is red and
D B is blue, but then we have a triangle AB D with exactly two red edges, a contradiction.

C

B

If some vertex D is connected to A, B and C with blue edges, then perform the operation on the triangles BCD, ABD,
ACD, and the number of blue edges increases, a contradiction.

C C C C
A@D —> A@D —> A@D —> A@D
B B B B

Otherwise all the vertices are connected to A, B and C with red edges. Due to parity we have at least one blue edge. If
X and Y are connected by a blue edge, then perform the operation on AXY, and the number of blue edges increases, a
contradiction.

Case 2. Every two red edges have no common vertex. Let AB and CD be red edges. Perform the operation in the
triangles ABD, BCD, ABD. The number of blue edges increases.

C C C C
A%}D —> A@D —> A@D —> A@D
B B B B



Problem 8. A chess knight has injured his leg and is limping. He alternates between a normal move and a short move
where he moves to any diagonally neighbouring cell.

< A

A

4 1

Normal move Short move

The limping knight moves on a 5 x 6 cell chessboard starting with a normal move. What is the largest number of moves he
can make if he is starting from a cell of his own choice and is not allowed to visit any cell (including the initial cell) more
than once?

Solution
Answer: 25 moves.

Let us enumerate the rows of the chessboard with numbers 1 to 5. We will consider only the short moves. Each short move
connects two cells from rows of different parity and no two short moves has a common cell. Therefore there can be at most
12 short moves as there are just 12 cells in the rows of even parity (second and fourth). It means that the maximal number
of moves is 12 short + 13 normal = 25 moves.

The figure shows that 25 moves indeed can be made.

195|719 |11

4 118 |20| 6 | 8 |10

A 21|26 |12

17| 3 |24 | 15|13 | 22

2116|1425 23

Problem 9. A positive integer n is Danish if a regular hexagon can be partitioned into n congruent polygons. Prove that
there are infinitely many positive integers n such that both n and 2" 4+ n are Danish.

Solution
At first we note that n = 3k is danish for any positive integer k, because a hexagon can be cut in 3 equal parallelograms
each of which can afterwards be cut in k equal parallelograms (Fig 1).

Furthermore a hexagon can be cut into two equal trapezoids (Fig. 2) each of which can afterwards be cut into 4 equal
trapezoids of the same shape (Fig. 3) and so on. Therefore any number of the form n =2 - 4 is also danish.

[N N
NIV

Figure 1 Figure 2 Figure 3

If we take any danish number n = 2-4F of the second type, then
2"y n=22"42.4¥=142=0 (mod3)
showing that 2" + n is also a danish number.

Problem 10. Maker and Breaker are building a wall. Maker has a supply of green cubical building blocks, and Breaker has
a supply of red ones, all of the same size. On the ground, a row of m squares has been marked in chalk as place-holders.
Maker and Breaker now take turns in placing a block either directly on one of these squares, or on top of another block
already in place, in such a way that the height of each column never exceeds n. Maker places the first block.

Maker bets that he can form a green row; i.e. all m blocks at a certain height are green. Breaker bets that he can prevent
Maker from achieving this. Determine all pairs (m, n) of positive integers for which Maker can make sure he wins the bet.



Solution
Answer: Maker has a winning strategy if m > 1 and n > 1 are both odd, or if m = 1.

Let us refer to the positions of the blocks in the wall by coordinates (x, y) where x € {0,1,..., m — 1} refers to the column
and y €{0,1,...,n—1} to the height of the block. Consider the different cases according to the parity of the parameters. In
addition, there are some exceptional trivial cases.

1. If m =1, then Maker trivially wins by the first move.
2. If m > 1, but n =1, then Breaker obviously can break the only row.

3. Suppose m is even. Then Breaker has a defensive strategy based on the horizontal reflection, i.e. if Maker places
a block in (x, y), then Breaker places a block in (m —1 — x, y). Note that this move is always available for Breaker,
because m is even. It is clear that this reflection strategy breaks all the green rows.

4. Suppose then n is even but m > 1 is odd. Then Breaker has the same defensive stra-tegy as above based on the
horizontal reflection, with one modification: Whenever Maker places a block in the middle column, Breaker does
too. Since n is even, this middle column does not influence the rest of the construction. Hence this reflection strategy
breaks all the green rows as above.

5. Suppose both m and rn are odd, m > 1 and n > 1. Maker’s strategy is the following: Maker starts with (0,0). Maker
pairs the positions (2i —1,0) and (27,0), i = 1,2,..., mT*l, so that if Breaker places a red block in one of the positions,
Maker places a green block in the other position; otherwise Maker does not use the bottom row. Maker’s reply to
Breaker’s (x, y) with y > 0is (x, y +1). This strategy builds a green row at the height 2.

Problem 11. Let H and I be the orthocentre and incentre, respectively, of an acute angled triangle ABC. The circumcircle
of the triangle BC1 intersects the segment AB at the point P different from B. Let K be the projection of H onto Al and
Q the reflection of P in K. Show that B, H and Q are collinear.

Solution

Solution I: Let H' be the reflection of H in K. The reflection about the point K sends Q to P, and the line BH to the line
through H’ and orthogonal to AC. The reflection about the line AT sends P to C, and the line through H’ orthogonal to
AC to the line through H orthogonal to AB, but this is just BH. Since composition of the two reflections sends B, H and
Q to the same line, it follows that B, H and Q are collinear.

c B

/ \ AN

Solution 2: Leta=3/BAC, B =%5/CBA,and y = $/ACB. Clearly then a+ 8 +y =90°, which yields ZBIC =180°—f —y =
90° + . From this we get Z/CPA=180°—Z/BPC =180°—/BIC =90°—q, so triangle AP C is isosceles.

Now since A[ is the anglebisector of ZPAC it must also be the perpendicular bisector of CP. Hence CK = PK = QK
so triangle K CQ is isosceles. Additionally AI bisects PQ so Al is the midline of triangle P CQ parallel to CQ. Since KH
is perpendicular to Al, it is also perpendicular to CQ, so we may then conclude by symmetry that H CQ is also isosceles.
Moreover ZQCA=/IAC =a,and ZACH =90°—2a, so ZQCH = a+90° —2a = 90° — @, which means that triangles H CQ
and AP C are similar. In particular we have ZC HQ = 2a. Since also

180°—/BHC=/HCB+/CBH =90°—2f +90°—2y =2a

it follows that B, H, and Q are collinear.

To prove that Q always lies outside of triangle ABC one could do the following: Since P lies on AB, angle C is larger
than angle B in triangle ABC. Thus angle AD B is obtuse, where D is the intersection point between Al and BC. As QC
and AT are parallel, angle Q C B is obtuse. Thus Q lies outside of triangle ABC.



Problem 12. Line ¢ touches circle S; in the point X and circle S, in the point Y. We draw a line m which is parallel to £ and
intersects S; in a point P and S, in a point Q. Prove that the ratio X P/ Y Q does not depend on the choice of m.

Solution
Let T be the second intersection point of PQ and S, and R be the second intersection point of PQ and S,. Let ZPX T =q,
ZRYQ=p.Itis evident that PX = XT, RY = Y Q. Calculate the ratio areap xr/areagy by two different ways. First,

areapyr XPZ?sina
areagyo Y Q2sinff’

Second,
areapyr PT 2R;sina

areapyo RQ  2R,sinf’

Equating these expressions we obtain
xp [R
YQ \R,

Problem 13. Let ABC be a triangle in which ZABC =60°. Let I and O be the incentre and circumcentre of ABC, respec-
tively. Let M be the midpoint of the arc BC of the circumcircle of ABC, which does not contain the point A. Determine
ZBAC giventhat MB=0lI.

Solution
Since ZABC =60°, we have ZAIC = ZAOC =120°. Let I, O’ be the points symmetric to I, O with respect to AC, respec-
tively. Then I’ and O’ lie on the circumcircle of ABC. Since O’I’ = OI = M B, the angles determined by arcs O’I’ and M B
are equal. It follows that /M AB = ZI’ AO’.

Now, denoting ZBAC = a, we have

a
/I'A0"=/T1AO =|/IAC—-/Z0OAC|= |§ —30°

It follows that § = ZMAB = /I’ A0’ =|§ —30°

,i.e. a=30°.

Problem 14. Let P be a point inside the acute angle ZBAC. Suppose that ZABP = ZACP =90°. The points D and E are
on the segments BA and CA, respectively, such that BD = BP and CP = CE. The points F and G are on the segments AC
and AB, respectively, such that D F is perpendicular to AB and EG is perpendicular to AC. Show that PF = PG.

Solution

As APBD is an isosceles right triangle ZGDP = ZBDP = 45°. Similarly ZPE C = 45°, and thus ZPE G = 45°. Therefore
PGDE is cyclic. As ZGDF and ZGEF are right EFGD is cyclic. Therefore DGPFE is a cyclic pentagon. Therefore
/LGFP=/GEP =45°. Similarly ZF GP =45°. Therefore AF PG is a (right) isosceles triangle.



N

Remark: It can be shown given two intersecting lines / and m, not perpendicular to one another and an point P. there exist
unique points F and G on [ and m respectively such that AF PG is an right isosceles triangle using similar constructions
to above.

Problem 15. Let n > 3 be an integer. What is the largest possible number of interior angles greater than 180° in an n-gon
in the plane, given that the n-gon does not intersect itself and all its sides have the same length?

Solution
Answer: 0if n=3,4and n—3 for n > 5.

If n = 3,4 then any such n-gon is a triangle, resp. a rhombus, therefore the answer is 0.

If n =5 then consider a triangle with side lengths 2,2,1. Now move the vertex between sides of length 2 towards the
opposite side by 0.0000001 units. Consider the triangle as a closed physical chain of links of length 1 that are aluminium
tubes and through them is a closed rubber string. So deform the chain on a level surface so that links of the chain move
towards the inside of the triangle, by fixing the vertices of the triangle to the surface. Geometrically, the links which are on
sides of length 2 are now distinct chords of a large circle, attached to each other by their endpoints.

If n > 5 then first consider a triangle of integer sides lengths, with sides of as equal lengths as possible, so that the sum
of side lengths is n. Imagine a closed aluminium chain on a rubber string, as in the previous case. Now move two of the
vertices of the triangle towards the third one be 0.00000001 units each. Again consider the chain on a level surface and
deform it so that its links move towards the interior of the triangle. Geometrically each side of a triangle is deformed into
consecutive equal-length chords of a large circle with centre far away from the original triangle.

For n > 5 this gives an example of n — 3 interior angles of more than 180°.

To see that n —2 or more such angles is not possible, note than the sum of interior angles of any n-gon (that does not
cut itself) is equal to (n —2)180°, but already the sum of the ‘large’ angles would be greater than that if there were at least
n—2 of ‘large’ angles of size greater than 180°.

Problem 16. Is it possible for any group of people to choose a positive integer N and assign a positive integer to each
person in the group such that the product of two persons’ numbers is divisible by N if and only if they are friends?

Solution
Answer: Yes, this is always possible.

Consider a graph with a vertex for each person in the group. For each pair of friends we join the corresponding vertices by
ared edge. If a pair are not friends, we join their vertices with a blue edge.

Let us label blue edges with different primes p;, ..., pr. To a vertex A we assign the number n(A) = %, where P =
P1P2--- Pr, and P(A) is the product of the primes on all blue edges starting from A (for the empty set the product of all its
elements equals 1). Now take N = P3,

Let us check that all conditions are satisfied. If vertices A and B are connected by a red edge, then P(A) and P(B) are
coprime, hence P(A)P(B)| P and P3| n(A)n(B) = #;(BJ. If vertices A and B are connected by a blue edge labelled with a
prime ¢, then g2 divides neither n(A) nor n(B). Hence g° does not divide n(A)n(B).

Problem 17. Determine whether the equation
xtryd=z147
has an infinite number of solutions in positive integers.
Solution
We consider the equation modulo 13 since both 3 and 4 divides 12=13—1. Now x* mod 13€{0,1,3,9} and y® mod 13 €

{0,1,5,8,12}. We can verify that x* + y3 # 7 mod 13. However z!+7 =7 mod 13 if z > 13, what leads to a conclusion that
this equation has no solutions with z > 13, what proves that it has finite number of solutions.



Problem 18. Let p >3 be a prime and let a;, a,, ..., aps be a permutation of 1,2,..., ’%l. For which p is it always possible
to determine the sequence a,, a,, ..., aps ifforall i, je{1,2,..., ”T_l} with i # j the residue of a;a; modulo p is known?

Solution
Answer: For all primes p > 5.

When p =5 itis clear that it is not possible to determine a, and a, from the residue of a; a, modulo 5.
Assume that p > 5. Now ’%l >3.Forallie{l,2,..., ’%1} itis possible to choose j,k€{1,2,..., ’”Tfl} such that i, j and k
are different. Thus we know
a; =(a;a;)a;ap)a;ar)” (mod p).

The equation x? = a (mod p) has exactly one solution in {1,2,..., pT_l}, and hence it is possible to determine a; for all i.

Problem 19. For an integer n > 1 let a(n) denote the total number of carries which arise when adding 2017 and n - 2017.
The first few values are given by a(1) =1, a(2) =1, a(3) =0, which can be seen from the following:

001 001 000
2017 4034 6051
42017 +2017 42017
=4034 =6051 =8068
Prove that
102017 -1
a(l)+a2)+...+a(10* —2)+ a(10*" —-1)=10- —
Solution

Solution I: Let k(m) be the residue of m when divided by 10¥. There is a carry at the digit representing 10 exactly when
k(2017)+ k(n-2017) > 10*. Thus the number of 10-, 100-, 1000- and 10000-carries are, respectively,

7102017 17102017 17102017 2017102017
10 ’ 100 ’ 1000 |’ 10000 ’

and similarly for the rest of the carries. Thus

102017_1
Z a(n)=7-102"+17.102% + ... +2017+201 + 20+ 2

n=1
2017 _q
=(240+1+7)-10%° +(240+1+7)- 10" + ... +(24+04+1+7)=10- 3
Solution 2: Let s(n) denote the digit sum of n. Then we claim the following.
Lemma. We have
s(n+m)=s(n)+s(m)—9a(n, m), (1)

where a(n, m) denotes the total number of carries, which arises when adding n and m.

Proof: We proceed by induction on the maximal number of digits k of n and m.
If both n and m are single digit numbers then we have just two cases. If n+ m < 10, then we have no carries and clearly
s(n+m)=n+m=s(n)+ s(m). If on the other hand n+ m =10+ k > 10, then

s(n+m)=1+k=14+(n+m—10)=s(n)+s(m)—9

Assume that the claim holds for all pair with at most k digits each. Let n = n; + a - 10¥*! and m = m,; + b - 10F*! where
n; og m,; are at most k digit numbers. If there is no carry at the k + 1th digit, then a(n, m)= a(n,;, m;) and thus

s(n+m)=s(ny+m)+a+b

=s(n))+a+s(m)+b—9a(n, m)=s(n)+s(m)—9a(n, m)

If there is a carry then a(n, m)=1+ a(n;, m;) and thus

s(n+m)=s(n;+my))+a+b—9



=s(n))+a+s(m)+b—9a(n, m)+1)=s(n)+s(m)—9a(n, m)

This finishes the induction and we are done.

Now observe that §(2017-102°17) =2 + 1 +7 = 10. We now use (1) a total of 102°17 — 1 times which yields

10 = 5(2017-10*"'") = 5(2017- (10*"'" — 1)+ 2017)
=5(2017-(10°°Y — 1))+ 5(2017)—9- a(10°°*" —1)

10201771
= 5(2017)+ 5(2017)-(10°"" = 1)—9- > a(n)
n=1

=10-102"7—9. a(n)
n=1
Thus we arrive at
1020171 102017_ 1
S atm=10-
9
n=1

Problem 20. Let S be the set of all ordered pairs (a, b) of integers with 0 < 2a < 2b < 2017 such that a? + b? is a multiple of

2017. Prove that )
Sazy Y
(a,b)es (a,b)eS

Solution
Let A={a:(a,b)e S} and B ={b :(a, b) € S}. The claim is equivalent to

ZZa = Zb. @)

Assume that for some x,y,z €{1,2,...,1008} both, x2 + y? and x? + z2, are multiples of 2017. By
(x*+y5)—(x*+2%) = y*—z% = (y+2)(y —z) = 0 (mod 2017),

0< y +2z <2017 and the fact that 2017 is a prime number, it follows that y = z. Hence, A and B are disjoint, and there is a
bijection f : A— B such that for any a € A and b € B the pair (a, b)isin S if and only if b = f(a).
We show that the mapping g defined by g(a)= f(a)—a for a € A is a bijection from A to A. Then (2) follows by

da=>ga = fla-da=>b->a
acA acA acA acA beB acA
Let a € A, and let h(a)=min{a + f(a), 2017—(a + f(a))}. Then 0 < 2h(a) <2017 and, by the definition of g, 0 < 2g(a) <

2017. Furthermore,
glaP+h(af = (a—f(a)’+(a+ f(a)? = 2(a*+ f(a)*) = 0 (mod 2017).

Ifa+f(a)<1008,then g(a)= f(a)—a < f(a)+a = h(a). fa+f(a)> 1008, then g(a) = f(a)—a < (f(a)—a)+(2017-2f(a))=
2017—(a+ f(a))= h(a). Consequently, g(a) e Awith f(g(a)) = h(a).
It remains to show that g is injective. Assume that g(a,) = g(a,) for some a,,a, € A, i.e.,

bl_al = bz—az, (3)

where b; = f(a;) for i = 1,2. Clearly, we also have h(a;)= h(a,) then. If h(a,)= a, + b, and h(a,) = a, + b,, then subtracting
(3) from a, + b, = a, + b, gives a, = a,. Similarly, if h;(a;) =2017—(a, + b;) and h, =2017—(a, + b,), then we obtain a, = a,.
Finally, if h(a,)= a; + b, and h, =2017—(a, + b,), then 2(a; + b,) =2017, a contradiction.

Remark: The proof as given above obviously works for any prime congruent to 1 modulo 4 in the place of 2017. With a little
more effort, one can show that the statement is true for any positive odd n (vacuously, if n has a prime factor congruent to
3 modulo 4).
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